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Abstract 
In sharp contrast to other methods which focus on 
the consequences of symmetry (such as dot products, 
d spacings etc.), the matrix approach deals with sym- 
metry in its most abstract form-represented as 
matrices. The basis of the matrix approach is to gener- 
ate the matrices that transform the lattice into itself. 
The resulting group of matrices defines the holohedry 
of the lattice. These matrices may be used both 
theoretically and practically to analyze symmetry 
from any cell defining the lattice. The mathematics 
and algorithms used to analyze symmetry become 
extremely simple since they are based on manipulat- 
ing integers and simple rational numbers using 
elementary linear algebra. The matrix approach pro- 
vides the conceptual and practical framework 
required to perform experimental procedures in a 
logical and general manner. In practice, the symmetry 
matrices may be used to define the metric symmetry, 
the directions of the symmetry axes, the Laue sym- 
metry, group-subgroup relationships, and conven- 
tional or standard cells. Because of its fundamental 
nature, the matrix approach should provide the basis 
for further experimental and theoretical advances in 
symmetry and symmetry-related topics in crystal- 
lography as well as in chemistry, physics and mathe- 
matics. 

Introduction 
In the collection of crystallographic diffraction data, 
the initial sequence of steps is directed towards 
defining the lattice and the crystal symmetry. In doing 
so, the experimentalist traditionally relies on familiar 
or standard orientations to guide both the collection 
and the evaluation of data. On the diffractometer, for 
example, a conventional unit cell (as defined by the 
magnitudes of the cell parameters) is determined and 
the assumed Laue symmetry is verified by taking 
specially oriented films or by checking the intensities 
of equivalent (h, k, l)'s listed for standard orienta- 
tions. There are many valid reasons for choosing 
conventional cells and orientations in the latter stages 
of experimental work. However, by choosing specific 
or familiar orientations in the initial stages, assump- 
tions are made that influence what data are collected 
and, consequently, mistakes are more likely to be 
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made. The lattice and its symmetry need not be 
expressed with respect to a standard cell. The proper- 
ties of the lattice are reflected in any primitive cell 
because translation of the primitive unit cell generates 
the entire lattice. The matrix approach to symmetry 
represents a powerful new strategy in which the 
emphasis is shifted from standard cells and standard 
orientations to matrices. 

In the matrix approach to symmetry, the matrices 
that transform the lattice into itself are generated. 
This group of symmetry matrices defines the 
holohedry of the lattice. The metric symmetry (and 
any pseudosymmetry) of the lattice is determined 
simply by counting the number of matrices. However, 
the experimentalist need not rely solely on metric 
information. The group of matrices generated in this 
way may be viewed as sets of equivalent (h, k, l)'s 
represented in matrix form. Thus the Laue symmetry 
may be readily analyzed without transformation to 
standard or familiar orientations. Furthermore, with 
extremely simple mathematics, the nature and the 
direction of each symmetry operation of the lattice 
may be calculated. This information may, in turn, be 
used to obtain a transformation matrix to a conven- 
tional or standard cell of the lattice. A short communi- 
cation on the matrix method, with emphasis on the 
determination of metric lattice symmetry, has been 
published (Himes & Mighell, 1982). A detailed 
account of the matrix approach to symmetry is dis- 
cussed herein. 

Theory 

B-matrix algorithm 

The basis of the matrix approach to symmetry is 
to generate the matrices that relate any primitive cell 
of the lattice to itself. Although any method that will 
generate the required matrices will suffice, it has been 
found that the B-matrix algorithm (Santoro, Mighell 
& Rodgers, 1980) is efficient and reliable. With the 
algorithm, the matrices B in the following equation 
are determined: 

a , = ~ B 0 a  j ( i , j=1 ,2 ,3 ) ,  
J 

where ai and aj define two primitive triplets of non- 
coplanar translations (a triplet is called primitive 
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when it defines a primitive cell). When using the 
B-matrix algorithm for the analysis of symmetry, one 
selects a primitive cell and generates a set (or sets) 
of symmetry matrices. Only B matrices with integer 
elements and a determinant of +1 are considered. 
The treatment of experimental error using the matrix 
method is conceptually very simple. Generated with 
each symmetry matrix is a 'tolerance' matrix. The 
tolerance matrix represents the tolerances in the unit- 
cell parameters required to transform the cell into 
itself by the specified matrix. Suppose cell 1 is defined 
by lattice parameters a, b, c, a,/3, y. If, when applied 
to cell 1, the matrix procedure yields the matrix B 
with the tolerance matrix 

tol a tol b tol c )  

tol a tol/3 tol y ' 

then the transformation of cell 1 by the matrix B will 
give cell 2 having lattice parameters 

a ' = a + t o l a  b ' = b + t o l b  c '=  c + t o l c  

a ' = a + tol a /3' = /3 + tol fl y'  = y + tol y. 

Thus the matrix procedure enables a direct com- 
parison of the calculated errors with the experimental 
errors for the refined unit cell. The computer program 
based on the B-matrix algorithm is very fast even 
when analyzing highly skewed unit cells. In addition, 
the computer time is essentially independent of the 
magnitudes of the tolerances specified for the unit-cell 
parameters. 

Metric symmetry  

By relating the lattice to itself, ,all the symmetry 
operations of the lattice are obtained. The metric 
lattice symmetry is then determined by counting the 
number of matrices. The greater the number of 
matrices found, the higher is the symmetry. Using the 
B-matrix algorithm, the numbers of matrices for the 
seven lattice metric symmetries are: triclinic, 1; mono- 
clinic, 2; orthorhombic, 4; rhombohedral, 6; 
tetragonal, 8; hexagonal, 12; and cubic, 24.* 

An important feature of the matrix approach is that 
one can determine the highest possible metric sym- 
metry within any specified tolerance of the unit-cell 
parameters, and that all possible pseudosymmetries 
are immediately apparent. By initially assuming very 
large experimental errors, obtains a menu of all pos- 
sible symmetries. Thus, to determine metric symmetry 
using the matrix procedure, one sets large limits for 
the tolerances (such as 1.0 and 6.0 for the cell edges 
and angles, respectively) and analyzes the set(s) of 
symmetry matrices and tolerance matrices obtained. 
In theory, it is the nature of the matrices themselves 

* To obtain a complete group of  symmetry operations using the 
B-matrix algorithm, multiply the matrices by -1  to generate a set 
twice the size. 

that defines the sets to be analyzed (i.e. those defining 
a symmetry group). In practice, however, the usual 
result is that the tolerance matrices alone clearly 
define the groups and all that is required to determine 
the metric lattice symmetry and pseudosymmetry is 
to count. 

When the symmetry matrices are used to transform 
an experimentally determined unit cell, metrically 
similar unit cells are generated (refer to the definition 
of tolerance matrices). If the lattice symmetry ele- 
ments correspond to crystallographic symmetry ele- 
ments, then these metrically similar cells are sym- 
metrically equivalent and the observed metric 
differences are due to experimental errors. The matrix 
approach to symmetry provides an ideal way to evalu- 
ate the experimental errors by simply averaging the 
set of tolerance matrices. The resulting 'error' matrix 
(=averaged tolerance matrix) may be compared 
directly to the e.s.d.'s for the refined unit cell, or it 
may be applied to the refined cell to calculate an 
idealized cell reflecting the exact metric symmetry. In 
either case, the extent to which the refined cell param- 
eters deviate from the exact metric symmetry is easily 
established. 

Laue symmetry 

The symmetry operations of the lattice may be 
generated with the B-matrix algorithm by transform- 
ing the lattice into itself. The transformation of cell 
1 to cell 2 can be represented by the equation: (a2) ()a 

b 2 = B  bl 

C2 Cl 

where (ai, bi, c~), i = 1, 2, represents the basis vectors 
in direct space and 

[b , ,  b,2 b,3 

B=/b21  b22 b23/. 

\b31 b32 b33/ 

The same matrix, B, can be used to transform the 
values of the (h, k, l)'s for the setting defined by cell 
1 to the setting defined by cell 2. Thus, the B matrices 
may also be viewed as matrix representations of 
equivalent (h, k, /)'s. With thc matrix approach to 
symmetry, the metric symmetry may be determined 
to within any specified tolerance of the unit-cell 
parameters, and the same group of B matrices may 
be used experimentally to determine the Laue sym- 
metry. The metric lattice symmetry, the Laue sym- 
metry and all possible pseudosymmetries can be 
readily evaluated without transformation to standard 
or familiar orientations. In practice, the Laue sym- 
metry may be determined by evaluating the intensities 
of equivalent reflections. A more theoretical proof of 
the Laue symmetry, as well as an analysis of all 
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possible subgroups, is obtained by analyzing the B 
matrices themselves. 

The symmetry operations of the lattice are rep- 
resented by the B matrices. The values of the elements 
in each matrix depend upon the kind and orientation 
of the element with respect to the coordinate system 
chosen. Because the B-matrix algorithm generates 
matrices with a determinant of +1, the nature of the 
symmetry axis is found by calculating the trace of the 
matrix: tr(B) = b~l + b22+ b33. The trace of the matrix 
is invariant under similarity transformations; that is, 
it is independent of the basis chosen. The symmetry 
axis is an n-fold rotation axis where n = 1,2,3,4,6 for 
tr (B) = 3, - 1,0,1,2, respectively. The direction of the 
axis is given by the solutions q of a linear algebraic 
equation of the form ( B - 1 ) q = 0 ,  where 1 is the 
identity matrix. 

Transformation to a standard cell 

The distribution of the symmetry elements in a 
lattice is well defined and may be used as a basis for 
choosing a conventional or standard unit cell. The 
same group of symmetry matrices used to determine 
the Laue symmetry from any primitive cell may also 
be used to obtain a transformation matrix to a stan- 
dard or conventional cell. The matrix approach is 
based solely on the symmetry and, in effect, is 
independent of the magnitudes of the cell parameters 
and experimental errors. When choosing a conven- 
tional cell, any metric constraints required may be 
applied separately. A set of conventions used for 
choosing cell edges based on symmetry, plus addi- 
tional metric constraints when necessary, is given in 
International Tables for Crystallography'(1983), pp. 
734-735. 

Once the B matrices have been generated, the 
calculations required to obtain a transformation 
matrix from any primitive cell to a standard cell are 
easily performed by hand. The general procedure is 
as follows: (1) generate the matrices relating the lat- 
tice to itself; (2) experimentally determine the sym- 
metry; (3) analyze the group of symmetry matrices: 
define the nature and direction of each axis; (4) 
choose three symmetry directions for the cell edges; 
(5) derive a transformation matrix. Steps 1 and 2 have 
been described in the previous sections. Con- 
sequently, the description of the procedure(s) to 
obtain a transformation matrix to a standard cell will 
focus on steps 3, 4 and 5. Two conceptually different 
approaches used to analyze the B matrices (step 3) 
and to derive a transformation matrix (step 5) will 
be discussed: (1) the lattice approach and (2) the 
object approach. In addition, when choosing the 
directions to be used as cell edges (step 4), two 
different approaches are described: (1) the analysis 
of dependency equations and (2) the analysis of deter- 
minants. 

Lattice approach. This approach obtains a transfor- 
mation matrix from a skewed cell to a standard cell 
by analyzing the symmetry of the lattice. Each B 
matrix is used directly to calculate the nature of the 
symmetry axis and the direction of the axis with 
respect to the lattice. Assume that the proper three 
directions for the cell edges have been chosen; this 
is easily done and will be discussed later. The task 
of obtaining a transformation matrix may now be 
viewed as a change-of-basis problem in linear algebra. 
That is, we have a skewed basis to be transformed to 
a new standard basis. The first step in solving this 
change-of-basis problem is to assemble an augmented 
matrix of lattice symmetry directions, where the direc- 
tions are written as columns. The three symmetry 
directions chosen for the cell edges will be the first 
three columns in the augmented matrix and should 
be assembled with account taken of certain crystallo- 
graphic conventions. These include the definition of 
a right-handed coordinate system and observation of 
the preferred order of the axes. As summarized below, 
a transformation matrix from a skewed to a standard 
cell is found by applying elementary row operations 
to the augmented matrix until a new standard basis 
is obtained. 

Ib kewed 
asis 

symmetry 

directions 

(optional) 

:ew 
asis 

0 1 

0 0 

symmetry matrix ] 
transformation~ 

directions 

(new basis) 

The new basis can be any 3 x 3 matrix. However, 
when determining a transformation matrix to a con- 
ventional unit cell, the new basis is usually the identity 
matrix and the mathematical operation involved is 
simply taking the inverse of a 3 x 3 matrix by reducing 
an augmented matrix to row echelon form. The choice 
of basis influences the relationships between the 
remaining vectors as well as the interpretation of the 
last three columns to give a transformation matrix. 
This is especially true for centered lattices and for 
the rhombohedral system. Although many variations 
are possible owing to the many bases that can be 
chosen, the relationships between the vectors is well 
defined and, in practice, the determination of a trans- 
formation matrix is straightforward for all cases. The 
lattice approach may be viewed as a form of lattice 
or cell reduction based on the symmetry. 

Object approach. The lattice approach reflects the 
nature of the generation of the symmetry matrices. 
Since the B matrices were generated by relating a cell 
to itself, the symmetry operations of the lattice were 
obtained. However, symmetry is often described in 
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terms of equivalent positions for objects. This is the 
basis used for the object approach. 

As explained in the discussion of Laue symmetry, 
the B matrices may be viewed as matrix representa- 
tions of equivalent (h, k, l)'s. Therefore, in order to 
shift the emphasis from lattices or (h, k, l)'s to objects 
or (x, y, z)'s, the nature and directions of the symmetry 
axes are calculated from the transposes of the inverses 
of the B matrices, (B-~) '. Once again, assume that 
the proper three directions for the cell edges have 
been chosen. With this approach, the task of obtaining 
a transformation matrix is greatly simplified because 
the standard basis is the identity matrix and the 
standard matrix for a matrix transformation is the 
matrix itself [refer to ch. 5 of Anton (1984)]. This 
means that the transformation matrix from any 
skewed cell to a conventional cell is obtained directly 
by writing the three directions chosen for the cell 
edges as rows in a matrix. The transformation matrix 
should be assembled so that crystallographic conven- 
tions are met. The type of centering present is defined 
by the value for the determinant of the transformation 
matrix except in the orthorhombic system where addi- 
tional information is sometimes required. 

Select symmetry directions for cell edges. Whether 
the lattice or the object approach is used to determine 
a transformation matrix to a standard cell, a critical 
step is the selection of three linearly independent 
vectors in the proper directions to be used as direc- 
tions for the cell edges. In the triclinic system, selec- 
tion of the cell edges is based on metric conditions. 
In the monoclinic system, the only symmetry direc- 
tion, a twofold axis, is labeled as b (the vectors a and 
e are chosen so that they lie in a plane perpendicular 
to b and meet additional metric constraints). The 
directions of the three twofold axes in the orthorhom- 
bic system are selected for the cell edges. In the 
rhombohedral  system, the directions for any two of 
the three twofold axes and the direction of the three- 
fold axis are used as directions for a, b and c, respec- 
tively. The resulting transformation may give either 
metrically rhombohedral  or metrically hexagonal 
axes depending on the relationships between these 
vectors (i.e. the basis chosen; see Lattice approach). 
In the tetragonal system, the directions for two of five 
possible twofold axes are taken as the a and b axes, 
while the direction of a fourfold axis is selected for 
e. Similarly, in the hexagonal system, the directions 
for two of the seven twofold axes are selected for a 
and b and the direction of a sixfold axis is selected 
for e. The cell edges for the cubic system are taken 
along three linearly independent fourfold axes. Thus, 
when choosing three symmetry directions to be used 
as cell edges, one finds that only the tetragonal and 
hexagonal crystal systems appear to allow more than 
one possibility. The following two subsections 
describe simple algorithms that enable one to evaluate 

quickly the relationships between the symmetry ele- 
ments in these systems and, consequently, provide 
direct ways to select the proper symmetry directions 
to be used as cell edges. 

Analysis of dependency equations. In the tetragonal 
system, five of the B matrices correspond to twofold 
axes. Since one of these five axes is parallel to a 
fourfold axis, there are at most six combinations of 
twofold axes to be considered. Likewise, in the 
hexagonal system, one of the seven twofold axes is 
parallel to a sixfold axis, leading to at most 15 ways 
to choose two of the remaining six directions. The 
first step in this procedure is to pick any two of the 
possible twofold axes and arbitrarily assign these as 
the directions for the a and b axes. The direction used 
for the c axis is that of a fourfold axis in the tetragonal 
system and a sixfold axis for the hexagonal system. 
Next, assemble a matrix by writing the symmetry 
directions as columns with the first three columns 
representing the a, b, c directions. Using elementary 
row operations, reduce the matrix to row echelon 
form. This step gives the dependency equations for 
the remaining symmetry directions with respect to the 
basis directions chosen. Simply by inspecting the 
dependency relations obtained from the reduced row 
echelon form of the matrix, it can be determined 
whether a proper basis has been selected and, if not, 
which directions of the twofold axes should have 
been chosen. Each of the six combinations of the 
twofold axes in the tetragonal system leads to one of 
three recognizable types of matrices. Similarly, in the 
hexagonal system, each of the 15 combinations of 
twofold axes falls into one of four recognizable forms 
of matrices. When the reduced row echelon form of 
the matrix for the tetragonal or the hexagonal system 
is 

order of axis 

2 2 4 2 2 

1 0 - 1  
0 1 0 

or  

order of axis 

2 2 6 2 

(i ° ° l  1 0 - 1  

0 1 0 

2 2 2 

1 1  
-1 2 - 

0 0 

respectively, or its equivalent, the proper basis has 
been chosen. Perhaps the easiest way to understand 
the dependency equations in the reduced row echelon 
form of the matrix is through use of a diagram. For 
both the tetragonal and hexagonal systems, plot the 
vectors projected onto the ab plane and compare the 
respective figures with those for space groups 
P4/mmm and P6/mmm in International Tables for 
Crystallography (1983). With a plot of the dependency 
equations, one can readily visualize the vectors that 
have been chosen and, if necessary, which vectors 
should have been selected. 

The analysis of dependency equations to select the 
directions of symmetry axes to be used as cell edges 
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is similar in approach to the lattice method of obtain- 
ing a transformation matrix, as both methods use 
elementary row operations to reduce a matrix to row 
echelon form. The lattice method may be viewed as 
a form of lattice reduction whereas the analysis of 
dependency equations may be viewed as a form of 
symmetry reduction. 

Analysis of  determinants. In the tetragonal system, 
there are six ways to combine two twofold axes with 
a fourfold axis. Similarly, in the hexagonal system, 
there are 15 ways to combine two twofold axes with 
a sixfold axis. For each combination, assemble a 3 x 3 
matrix of directions. The three directions to be used 
for the cell edges are found directly from the values 
of the determinants of these matrices. In the 
tetragonal system, one of the six determinants will be 
twice the others. Assume that the four possible two- 
fold axes are labeled 1,2,3,4. If the combination of 1 
and 2 with a fourfold axis gives a determinant twice 
the rest, then the vectors 3 and 4 should be selected 
as directions for the conventional cell edges. In the 
hexagonal system, there will be nine combinations 
with a determinant of + 1, three combinations with a 
determinant of ±2, and three combinations with a 
determinant of +3. If the six possible twofold axes 
are labeled 1 , . . . ,  6, and the combinations of 1-2, 
1-3 and 2-3 give determinants of +3, then the direc- 
tions for any two of the twofold axes 4, 5 or 6 may 
be used as cell edges. Comparison of the values of 
determinants provides a second way to analyze 
the dependency relations between the symmetry 
elements. For example, in the tetragonal system, 
the one basis with a determinant twice the others 
may be compared to relabeling the a and b axes of 
a conventional tetragonal cell so that they lie 
along the cell diagonals. However, the determinant 
method greatly simplifies the analysis based on 
symmetry because data is analyzed with respect 
to any orientation without having to view it, 
either visually or mathematically, from a standard 
basis. 

Similarity. The values of the elements in each B 
matrix depend on the kind and orientation of each 
symmetry operation with respect to the coordinate 
system chosen. As a result, the group of symmetry 
matrices generated from a skewed unit cell will be 
different from the group of symmetry matrices gener- 
ated from either a standard cell or a second skewed 
cell. Since any two cells defining the lattice belong 
to the same Bravais class, there exists a homogeneous 
linear transformation which will transform one lattice 
into the other and will transform the holohedry of 
one lattice into the holohedry of the other. Suppose 
the transformation of cell 1 to cell 2 is represented 

by the equation (a2)  )al 
b 2 = S  bl 

C2 Cl 

and the holohedry for cells 1 and 2 is defined by 
/-/1 = {B1} and HE = {B2} respectively, where B1 and 
B2 are the groups of B matrices. The relationships 
between the symmetry groups is given by the equation 
H2=SHIS -1. This equation defines the effect a 
change of basis has on the matrix of a linear operator. 
By definition, two matrices representing the same 
linear operator with respect to different bases are 
similar. An explanation of the similarity equation is 
given in §5.5 of Anton (1984). 

Discussion and examples 

Metric symmetry and pseudosymmetry 

When determining the metric symmetry for an 
unknown crystal, one must be particularly careful 
that the unit-cell parameters and errors have been 
properly determined and interpreted. In many cases, 
it appears that the reported experimental error (as 
indicated by e.s.d.'s) is too optimistic, even for unit- 
cell parameters refined by least-squares analysis using 
modern diffractometry. High precision cannot always 
be used as an indication of accuracy. Independent 
unit-cell determinations of/3-clopenthixol illustrate 
this point. The X-ray crystal structure of/3-clopen- 
thixol has been reported in the literature (Jones, Shel- 
drick & Horn, 1981). A crystalline sample of /3- 
clopenthixol had earlier been obtained from one of 
these authors (AH) and the unit-cell parameters were 
determined using both powder (Morris, McMurdie, 
Evans, Paretzkin, Hubbard & Carmel, 1980) and 
single-crystal diffraction techniques. 

Single-crystal 
Single-crystal cell Powder cell 

cell determined (Morris et al., 
(Jones et al., 1981) at NBS 1980) 

a = 6.493(2) A 6.4978(7)/~ 6-518(4)/~ 
b =  7.758(3) 7-7701(8) 7.773(3) 
c =21.881(8) 21.871(2) 21.939(11) 
a =90.11(2) ° 90.011(8) ° 90"06(4) ° 
/3 =91.48(2) 91.501(9) 91.60(5) 

7=92.81(2) 93.129(9) 93.06(4) 

The unit-cell parameters agree reasonably well. 
However, depending on which values are used, the 
y angles for the two cells refined with single-crystal 
diffractometer data differ by approximately 16 to 35 
estimated standard deviations (e.s.d.'s). Thus, 
especially when working with cells prior to the final 
cell, one should assume rather large experimental 
errors whenever the highest possible symmetry is 
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sought. Experience has shown that the matrix pro- 
cedure correctly predicts the metric symmetry even 
when the experimental error is large. 

The mineral chabazite provides an example where 
the assessment of the experimental error plays an 
integral role in the determination of metric symmetry. 
Lattice parameters for chabazite were determined 
using a natural sample from Wasson's Bluff, Nova 
Scotia, Canada: 

a=9.3799(14),  b=9.3926(14), c=9.3918(14)A,  
a=94.263(12) ,  /3=94.408(12), 3,=94.469(12) °. 

Analysis of this primitive cell (=reduced cell) using 
the matrix procedure gave a set of six symmetry 
matrices when program limits of 1.0 and 6.0 were 
used for the cell edges and angles, respectively (Table 
1). Suppose the limit for a reasonable experimental 
error is chosen to be equal to 5 e.s.d.'s of the lattice 
parameters. With this constraint, the metric symmetry 
for chabazite would be monoclinic. When the toler- 
ance matrices for matrices 1 and 6 are averaged and 
applied to the initial cell, the calculated lattice param- 
eters are: 

a = 9.3799, b = 9-3922, c = 9.3922 ~ ,  
a = 94.2630, /3 = 94.4385, ~/= 94.4385 °. 

This cell may be transformed by the matrix 
(0 1 1 / 0 -1  1 / 1 0 O)to a C-centered monoclinicunit 
cell with lattice parameters 

a = 12.779, b = 13.767, c =9.380 ~ ,  
a = 90-00, /3 = 96.53, y = 90.00 °. 

Although all six tolerance matrices are relatively 
small, the tolerance matrices for matrices 1 and 6 are 
considerably less than those for matrices 2, 3, 4 and 
5. With the current definition of a reasonable experi- 
mental error (i.e. 5 e.s.d.'s), the matrix procedure indi- 
cates that chabazite is monoclinic with rhombohedral 
pseudosymmetry. The knowledge of metric pseudo- 
symmetry is extremely useful as it means that there 
exist distinct, but metrically similar, unit cells in the 
lattice. Three metrically similar monoclinic cells were 
found for chabazite and refined on a diffractometer. 
If chabazite is assumed to be monoclinic with rhom- 
bohedral pseudosymmetry, the three C-centered cells 
presented in Table 2 would index differently the same 
set of diffraction data. Of the three cells, note that 
the refined lattice parameters for cell 2 are closer to 
having exact monoclinic metric symmetry than are 
those for cells 1 and 3. 

A second interpretation is that the average of all 
six tolerance matrices from Table 1 corresponds to 
reasonable experimental errors and that chabazite has 
rhombohedral metric symmetry. When the error 
matrix (=averaged tolerance matrix) is applied to the 
refined primitive cell, the resulting unit cell has lattice 

Table 1. Symmetry matrices and tolerance matrices 
found for chabazite 

 oooo0 000o  o (1) 0 - 
\ 0  0 / - 1  \0-0000 0.0610 -0 .0610]  

(2) (i 100 !) 0"0127 -0.0127 0-0000~ 

0"1450 -0"1450 0"0000] 

(3) -1  

0 

0"0119 0"0000 -0"0119~ 

0"2060 0"0000 -0"2060]  

(4) (i0i)01 0"0119 -0"0127 0-0008~ 

0"2060 -0"1450 -0"0610]  

(5) (!li)Oo 0"0127 -0"0008 -0"0119)  

0-1450 0"0610 -0"2060]  

(6) (!0!)01 0-0000 0.0000 0.0000~ 

0.0000 0.0000 0.0000/ 

Table 2. The three C-centered monoclinic cells of  
chabazite which reduce to a common cell 

Cel l  1 

a = 12.7465 (20)/~ 

b = 13.7816 (20) 
c =9.3918 (14) 

ct = 89.905 (12) ° 

/3 = 96.392 (12) 

= 89.922 (12) 

05 
• 5 0.5 

0 

k 

a = 9.380 

a = 94.26 

Cel l  2 Cel l  3 

12.7794 (17) A 12.7533 (20) ,~ 

13.7674 (22) 13.7743 (20) 

9.3799(14) 9.3926(14) 

89.959 (13) ° 90.136 (12) ° 

96.532 (12) 96.433 (12) 

90.004 (12) 90.073 (12) 

b 
(o o i) (o.: i) 0.5 -0 .5  0 

0.5 0-5 \0 .5  -0 .5  

b = 9.393 c = 9.392 ,~ 

/3 = 94.41 y = 94-47 ° 

parameters 

a=9.3881,  b=9.3881,  c = 9 . 3 8 8 1 ~ ,  

a=94 .380 ,  f l=94.380,  y=94.380 ° . 

This calculated cell differs from the refined cell by a 
maximum of approximately 10 e.s.d.'s. The matrix 
procedure yields all possible lattice symmetries within 
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Table 3. Symmetry matrices found for C 5 6 H 6 o C u 5 N 2 2  

Program limits of  1.0 and 6.0 were used for the cell edges and 
angles, respectively. (!0!) (!0!) 
(I) -1 (2) 1 

0 0 - 

(4) 0 (5) - 0 

0 0 

(7) -1 (8) 1 
0 - 0 

(3) - 0 
0 - 

( i  1 ! )  (6) o 
0 - 

Table 4. C 5 6 H 6 o C u s N 2 2  : symmetry matrices calculated 
from a skewed cell 

Program limits of  1.0 and 6.0 were used for the cell edges and 
angles, respectively. 

° i) ° i) (1)  1 (2)  -~ 
o 0 

(4) -1 (5) -1 

- 0 0 - 

(7) -1 (8) 1 
0 o 

(3)  - 1 
0 - 

(i o ::) (6) 1 
0 

a specified tolerance. The actual selection of the high- 
est possible symmetry of the lattice is dependent on 
the assessment of the experimental error. An advan- 
tage of using the matrix procedure to determine metric 
lattice symmetry is that the method enables a direct 
comparison of the calculated errors with the experi- 
mental errors determined for the primitive unit cell. 
Chabazite (from north-east Azerbaijan, Iran) has 
been reported in the literature as having rhombohe- 
dral symmetry, space ~roup R3m and unit-cell 
parameters a = 9.421 (4) ,% a = 94.20 ( 1 ) ° (Calligaris, 
Nardin, Randaccio & Chiaramonti, 1982). 

Laue symmetry and conventional cell determination 

A primitive unit cell with 

a =  13.8102(21), b =  13.8091(22), c =  16.6620(28)/~, 

a=89.994(13) ,  /3=89.993(13), y=89.980(13)  ° 

was determined for the complex C56H6oCusN22. The 
group of B matrices generated from this unit cell is 
given in Table 3. The metric lattice symmetry is 
tetragonal since eight symmetry matrices were found. 
When evaluating symmetry using the matrix method, 
the experimentalist need not rely solely on metric 
information. The group of B matrices may be viewed 
as sets of equivalent (h, k, l)'s represented in matrix 
form. Once a reflection has been found on the diitrac- 
tometer, the equation 

may be used to generate sets of reflections that should 
have equivalent intensities if the metric and crystal 
symmetry agree. Substitution of the B matrices from 
Table 3 into the above equation, where i = 1, . . . ,  8 
for the tetragonal system, generates the following set 
of (h, k, l)'s: 

( - h , - k ,  l) ( -h ,  k, - l )  ( -k ,  - h , - l )  ( -k ,  h, l) 
( k , - h , l )  ( k , h , - l )  ( h , - k , - l )  ( h , k , l ) .  

This is the familiar set used for the tetragonal system 
since the primitive cell used to generate the symmetry 
matrices reflected the conventional metric conditions 
consistent with the highest possible symmetry of the 
lattice (i.e. in the tetragonal system, a cell with a = b 
c and a =/3 = y = 90 ° as opposed to a primitive cell 
with a ~ b ~ c and a ~/3 ~ y ~ 90°). For sets of gen- 
eral (h, k, l)'s, it was found that the intensities for all 
eight reflections in the sets were equivalent, indicating 
4/mmm Laue symmetry for the complex. This 
observation was confirmed by a full structure determi- 
nation (Himes, Mighell & Siedle, 1981). 

With the matrix approach, the Laue symmetry and 
any pseudosymmetry, metric or crystal, may be deter- 
mined from any cell defining the lattice. A second 
unit cell was determined for the complex 
C56H6oCusN22 and refined on a dittractometer: 

a = 19.5263(27), b 42.4583(59), c = 30.8742(45)/~, 

a=29.242(13) ,  /3= 18.442(13), y=23.106(12)  °. 

As expected, the matrix procedure predicted 
tetragonal symmetry since eight B matrices were gen- 
erated (Table 4). The group of matrices used to deter- 
mine the metric symmetry was also used to evaluate 
the Laue symmetry from this skewed unit cell. For 
example, when the (5,6,7) reflection was multiplied 
by each of the B matrices from Table 4, the following 
set of (h, k, l)'s was predicted, and subsequently 
found, to have equal intensities: 

( - 1 , - 6 , - 4 )  ( -1 ,  2, 1) ( - 5 , - 1 4 , - 7 )  ( - 5 , - 6 , - 8 )  
( 5, 14, 8 ) (  1 , - 2 , 4 ) (  1, 6 , - 1 ) (  5, 6, 7). 

Once the symmetry has been evaluated, these same 
matrices may be used to obtain a transformation 
matrix to a conventional or standard cell. For this 
example the lattice approach is used to analyze the 
symmetry matrices and to derive a transformation 
matrix, while the analysis of determinants is 
employed to choose the directions to be used as cell 
edges. Even for a skewed unit cell, the spatial distribu- 
tion of all the symmetry operations of the lattice may 
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be obtained by a simple analysis of the symmetry 
matrices. Calculation of the determinant (always + 1) 
and the trace for each matrix indicates that matrices 
1 and 6 correspond to fourfold axes ( t race= + l ) ,  
matrices 2, 3, 4, 5, 7 correspond to twofold axes 
(trace = -1) ,  and matrix 8 corresponds to the identity 
operation (trace = +3). The direction of each axis is 
given by the solutions of an equation of the form 
( B - 1 ) q =  0. Thus, to calculate the direction of the 

twofold axis represented by matrix 2, the f o l l o w i n g e q u a t i o n  is solved: (2)* (--_1! 

- 2  4 b - - - -  O. (3) 
0 2 C 

Since a =½c and b =c,  the direction of the twofold (4) 
axis is given by (1, 2, 2). From similar calculations, 
it can be found that matrices 1 , . . . ,  7 correspond to 
the (0, 1, 0), (1, 2, 2), (0, 1, 0), (0, 0, 1), (2, 4, 3), (0, ( ! !  
1, 0), (1, 2, 1) directions respectively. The next step (5)* 
in determining a matrix to a conventional cell is to 
select the three symmetry directions to be used as the ( i i  
cell edges. In this case, the direction of a fourfold (6) 
axis is taken as c and the directions for two of the 
f o u r t w o f o l d a x e s r e p r e s e n t e d b y m a t r i c e s 2 , 4 , 5 , 7  ( - !  
are selected for the cell edges a and b. The 3 x 3 (7) 
matrix of directions represented by matrices 4-5-1, /- 
has a determinant of +2 whereas the matrices of 
directions for the combinations 2-4-1, 2-5-1, 2-7-1, 
4-7-1 and 5-7-1 have determinants of + 1 or - 1. Thus 
the symmetry directions represented by matrices 2-7- 
1 should be chosen as directions for conventional cell 
edges. The task of obtaining a transformation matrix 
from the skewed cell to a conventional cell may now 
be viewed as a change-of-basis problem. When the 
augmented matrix of directions 

i 1 0 0 2 1 
2 1 0 4 0 

1 0 1 3 0 

is reduced to row echelon form, 

i 0 0 1 1 -1  
1 0 - 1  1 2 

0 1 0 0 - 2  

1 , 

0 

0 - -  , 

1 

the familiar relationships between the symmetry 
operations is defined by the first five columns of the 
matrix, while the last three columns give a transforma- 
tion matrix to a conventional cell. 

The compound basic beryllium acetate provides 
a second illustration of the matrix approach to 

Table 5. Basic beryllium acetate: symmetry matrices 
calculated from a skewed primitive cell 

P r o g r a m  l imits  o f  1.0 a n d  6.0 were  used  fo r  the  cell edges  a n d  
angles ,  r e spec t ive ly .  As te r i sks  a re  used  to def ine  o n e  o f  the  two  
sets o f  m a t r i c e s  t ha t  m a y  be  u sed  to  ca lcu la te  sets o f  e q u i v a l e n t  
(h, k , / ) ' s  fo r  m3 L a u e  s y m m e t r y .  

(1)* -1 (9) - 
0 

1 

0 

0 (17)* 9 

0 4 

(i i) (i (10)* 9 - 2  (18)* - 1 0  1 

4 - - 4  

(ilii) (11) - - 9  2 (19) 1 

- 4  0 

!) (12) -1  (20)* 1 - 9  1 

0 - 4  

(i l!!) (! !) (13)* 0 (21)* - 9  1 

0 - 4  

(i :i) (14)* - 10 (22) 0 

4 0 

(15) -10  2 (23) 10 -1  

- 4  4 0 

(16)* -1  (24) 1 

0 - 0 

2 i) 9 -1  

4 - 

10° !) 
9 -1  

4 - 2 !) 
- 9  2 

- 4  

0°i) 

symmetry. A primitive unit cell with 

a =  19.2600(9), b=63.8825(62),  c=27-2394(27) A, 

a = 5.7696(134),/3 - 19.4709(129), ~/= 17.2952(126) ° 

was refined on a diffractometer. The metric lattice 
symmetry is cubic since 24 matrices were found (Table 
5). The error matrix, 

0"0027 0.0048 0.0023~ 

-0"0014 0.0003 -0 .0001] '  

indicates that the refined cell parameters must be 
changed by less than 13 e.s.d.'s in order to reflect 
exact cubic metric symmetry. The B matrices were 
next used to calculate sets of 24 (h, k , / ) ' s  which were 
examined on the diffractometer. Rather than observ- 
ing one group of 24 equivalent intensities, two sets 
of 12 equivalent intensities were found, indicating 
m3 Laue symmetry. It is both the nature and the 
direction of the observed axes that defines the sym- 
metry. [The symmetry is not hexagonal even though 
sets of 12 intensities were found to be equivalent since 
different sets of (h, k, /)'s would be equivalent for 
the hexagonal system and there are no matrices 
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corresponding to sixfold axes.] Calculation of the 
determinant (+ 1) and trace for each symmetry matrix 
reveals that matrices 2, 5, 14, 17, 20 and 21 correspond 
to fourfold axes (trace = +1), matrices 4, 6, 9, 11, 12, 
15, 19, 22 correspond to threefold axes ( t race=0)  
and, with the exception of the identity matrix, 24, the 
remaining symmetry matrices correspond to twofold 
axes (trace = - 1 ) .  Since the symmetry was found to 
be cubic, the directions of the fourfold axes may be 
used as directions for conventional cell edges. When 
the object method is used to obtain a transformation 
matrix to a conventional cell, the directions of the 
axes are calculated from the transposes of the inverses 
of the symmetry  matrices. Matrices 2, 5 and 17 corre- 
spond to fourfold axes in the (0, 2, -5 ) ,  (2, - 2 ,  3) and 
(2, 0, - 1) directions, respectively. A transformation 
matrix is obtained simply by writing these directions 
for the fourfold axes as rows in a matrix. This matrix 
should be assembled so that it has a positive deter- 
minant, ensuring the definition of a right-handed 
coordinate system. Since the determinant of the trans- 
formation matrix, 

2 , 

0 

is +4, the conventional cell will be F-centered. When 
this matrix is applied to the refined primitive cell, the 
resulting unit cell will not reflect the exact cubic 
symmetry. The observed differences are due to experi- 
mental errors. However, it must be remembered that 
the cell calculated in this way is just one of 24 metri- 
cally similar cells in the lattice. Thus, in certain cases, 
this practice can lead to a misevaluation of the cell 
parameters and errors. The matrix approach provides 
an ideal way to calculate the conventional cell taking 
into account the metric deviations of all the symmetri- 
cally equivalent cells in the lattice. The error matrix 
is used to calculate an ideal cell reflecting exact metric 
symmetry (a = 19.2627, b = 63.8873, c = 27.2417/~, 
a = 5.7682, /3 = 19.4712, y =  17-2951°). When the 
transformation matrix is applied to the idealized 
primitive cell, a conventional unit cell with a = 
15.728/~ is obtained. The group of matrices defining 
the holohedry of the conventional cell may also be 
calculated from any cell defining the lattice using the 
similarity equation/-/2 = SH1 S -1. For example, sub- 
stitution of matrix 1 from Table 5 into the equation 
gives matrix 1 in Table 6: 

)( 1°11 2 - 2  3 - 3  0 2 -½ -~  1 

2 - 5  - 9  - 1  -2  - 2  

0 - 1  - 4  0 - 1  - 1  

"-  0 . 

0 - 
J 

Table 6. Basic beryllium acetate: symmetry matrices 
defining the holohedry of  the conventional cell 

T h e s e  m a t r i c e s  w e r e  c a l c u l a t e d  b y  h a n d  b y  a n a l y z i n g  t h e  s y m m e t r y  

matrices for the skewed unit cell (Table 5). 

(i 1 i) (!1i) (i 1!) (1) 0 (9) 0 - (17) 0 

0 - - 0 0 

(i°i) ( i°i)  (i ° i) (2) 1 (lO) -1 (18) o - 
- 0 - 0 - 1  

(i ° !/ (i°i) (i°-i) (3) - 1  (11) - 0 (19) - 0 

0 - - 1  1 

(!-li/ (i °- i ) (!°- i )  (4) 0 (12) 0 (20) 1 

- 0 - 1  0 

(i°i) (-i°i) (i 1 i) (5) 0 (13) 0 (21) - 0 
- 1  1 0 

(i°i) (!°i) i) (6) 0 (14) 0 - (22) 0 - 
1 1 0 

(-i ° i) (i'i) (-i o!) (7) 1 (15) 0 (23) - 1  

0 - 0 0 

(i !) (i°i) (i°i) (8) - 0 (16) - 1  (24) 1 

0 - 0 0 

Thus the similarity equation provides one way to 
illustrate theoretically that the observed equivalent 
intensities correspond to m3 Laue symmetry. 

As illustrated by the previous examples, the B 
matrices may be used both theoretically and practi- 
cally to analyze symmetry from any cell defining the 
lattice. The B-matrix algorithm generates the matrices 
relating the lattice to itself to within any specified 
tolerance of  the unit-cell parameters. In practice, the 
program tolerances are routinely set to relatively large 
values, providing a menu of all possible symmetries. 
When used in combination with experimental data, 
the Laue symmetry and any group-subgroup relation- 
ships (such as pseudosymmetry) are immediately 
apparent. These same matrices may be used to calcu- 
late a transformation matrix to a standard cell or even 
a second skewed cell. With use of the similarity 
relationship, the symmetry matrices for the trans- 
formed basis may also be calculated. 

C o n c l u d i n g  r e m a r k s  

In sharp contrast to other methods which focus on 
the consequences of symmetry (such as dot products, 
d spacings etc.), the matrix approach deals with sym- 
metry in its most abstract fo rm- rep re sen ted  as 
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matrices. Matrices provide an ideal mathematical 
notation for conceptualizing and analyzing symmetry. 
The mathematics and algorithms used to analyze sym- 
metry become extremely simple since they are based 
on manipulating integers and simple rational numbers 
using elementary linear algebra. More importantly, 
the ability to abstract the symmetry from a problem 
and to represent it as a group of matrices leads to 
numerous practical and theoretical applications. In 
crystallography, for example, we have shown that the 
symmetry matrices may be used in practice to define 
the metric symmetry, the directions of the symmetry 
axes, the Laue symmetry, group-subgroup relation- 
ships, and conventional or standard cells. By provid- 
ing the conceptual and practical framework required 
to perform experimental procedures in a logical and 
general manner, the matrix method should revol- 
utionize the automation of diffractometers. Although 
evolving from research in lattices in crystallography, 
the matrix approach to symmetry is not limited to 
this discipline. Because of its fundamental nature, the 
matrix approach should provide the basis for further 
experimental and theoretical advances in symmetry 
and symmetry-related topics in crystallography as 
well as in chemistry, physics and mathematics. 

Program availability 

A Fortran program, N B S * L A T T I C E ,  has been writ- 
ten to analyze lattice relationships and is available 

for distribution by the NBS Crystal Data Center. The 
present version of N B S .  L A T T I C E  performs several 
functions including the determination of metric lattice 
symmetry, the identification of unknown materials 
using lattice-formula matching techniques, the calcu- 
lation of the reduced cell of the lattice, and the 
calculation and reduction of specified derivative 
supercells and/or  subcells. 

The authors thank Professor H. Ammon of the 
Chemistry Department of the University of Maryland 
for use of the X-ray diffractometer which was pur- 
chased through NSF support, Grant CHE-84-02155. 
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Abstract 

A probability distribution is derived in the form of 
an infinite sum of cosine phase invariants between 
any number of structure factors and is applicable to 
any space group. No approximations are made. With 
the use of only the first-order terms, and the assump- 
tion that the reflection magnitudes are small and that 
all atoms are equal, the distributions reduce to the 
known invariant distribution forms. The effect of 
neighbourhood reflections is implicit in the form of 
the distribution. 

1. Introduction 

Joint probability distributions (j.p.d.'s) have been 
derived by many authors, e.g. Hauptman & Karle 

0108-7673/87/030384-10501.50 

(1953), Klug (1958), Naya, Nitta & Oda (1965), 
Tsoucaris (1970), Hauptman (1974, 1975), Fortier & 
Hauptman (1977), Heinerman, Krabbendam & 
Kroon (1979), Giacovazzo (1974, 1975, 1976) and 
more recently Shmueli & Weiss (1985). Each of these 
treatments is applicable to a particular set of phases 
or a particular space group. The distribution 
described in this paper is general and is intended to 
serve as the starting point for the derivation of a 
specific formula, rather than deriving the distributions 
for each case of interest. The expressions presented 
have the advantage of separating the notational com- 
plexity of the derivation of distributions into two 
distinct areas. The first is the calculation of integral 
coefficients. The second is the search for a set of 
integers that satisfy the phase-invariant relationships. 
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